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For reasonable establishing of maintenance strategies, safety security and cost limitation must
be considered at the same time. In this paper, the concept of system reliability introduces and
optimizes as the key of reasonable maintenance strategies. This study aims at optimizing com-
ponent’s reliability that satisfies the target reliability of brake system in the urban transit. First
of all, constructed reliability evaluation system is used to predict and analyze reliability. This
data is used for the optimization. To identify component reliability in a system, a method is
presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multi-layer
neural networks trained by back propagation are used to find out the relationship between
component reliability (input) and system reliability (output) of a structural system. The inverse
problem can be formulated by using neural network. Genetic algorithm is used to find the mini-
mum square error. Finally, this paper presents reasonable maintenance cycle of urban transit
brake system by using optimal system reliability.
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1. Introduction a complicated, electronically and mechanically,
structure ; it requires high qualities of mainte-
The urban transit is an integrated system with nance for safety. According to Lee et al.(2003), it
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urban transit maintenance. In general, reliability
is defined as the ‘probability that an item will per-
form a required function without failure under stat-
ed conditions for a stated period of time.” (Garcia
Marquez et al., 2003) The concept can be alter-
ed to establish the maintenance cycle in order to
support each vehicle device by applying it to the
urban transit maintenance stage. This maintenance
process using reliability concept is called RCM
(Reliability Centered Maintenance).

Many studies have been on progress about RCM.
Smith (1993) defined the RCM as a method to
determine any reliable operations for physical
equipments and presented a preventive mainte-
nance by analyzing functional failures. Richard
(1995) introduced the practical method applying
RCM, which Smith et al. had presented, to in-
dustrial field. Jacobs (1998) studied the method
that reduced maintenance tasks by using RCM. In
the field of railway, the preventive diagnosis and
the predictive maintenance for railway equipment
was studied by Wada (1988). Recently, Mettas
(2000) showed the optimization method to mini-
mize the operating function and to satisfy the tar-
get system. However, it is still necessary to do
researches on the maintenance data and the opti-
mization performance with the maintenance. The
reasons are as follows: 1) it is hard to find the
real cases about the application of the Reliability
Evaluation System (RES) for obtaining the re-
liability data in industrial construction ; 2) it is
not easy to gather historical data for the mainte-
nance ; and 3) it is difficult to calculate the cost
function which can be applied to the specific
structure so that there can be errors in case of the
optimization using this function.

This research obtains the reliability informa-
tion from RES of the VVVF (Variable Voltage
variable Frequency) urban transit which is de-
veloped by web in previous research (Bae et al.,
2005) . In addition, the cost function problem will
be solved out by applying the inverse analysis
theory to the reliability optimization. To use the
maintenance data in web system database effec-
tively, the optimization has been done by using
hybrid neuro-genetic algorithm. In other words,
the optimization problem has been formulated by

the neural network (Fahlman, 1990 ; Rumelhart
et al., 1986) and performed by the genetic algo-
rithm (Holland, 1975). The optimal maintenance
reliability is calculated for each sub-component
in the maintenance process by optimizing the brake
system among the 14 systems in VVVF urban
transit and the reasonable standard of the main-
tenance cycle is set up.

This paper is organized as follows : In section
2, a method is proposed which uses hybrid neuro-
genetic technique to allocate the maintenance re-
liability ; in section 3, the reliability based main-
tenance system for urban transit is developed to
calculate the reliability index from maintenance
data ; in section 4, techniques proposed in this
research are applied to the brake system of urban
transit and the results of reliability allocation are
drawn ; and Section 5 provides conclusions.

2. Reliability Allocation Using Hybrid
Neuro-Genetic Technique

This research allocates the maintenance relia-
bility to each device by optimizing the reliability
of sub-components for meeting a desired relia-
bility of a subject system. If the allocated relia-
bility is converted to a time domain, the operation
time of each device can be derived from reliabili-
ty index. Therefore, it is possible to estimate the
standard of a reasonable maintenance cycle from
historical data. To identify the optimal reliability
with maintenance historical data, this research
introduces hybrid neuro-genetic technique, one
of soft computing techniques, aiming at escaping
intensive computation. Back-propagation neural
networks, one of neural networks, adopted to ap-
proximate the reliability relationship from the
prepared learning data. Genetic algorithm, one of
evolutionary algorithms, used to identify the opti-
mal reliability minimizing the error which is the
objective function.

2.1 Hybrid neuro-genetic technique for re-
liability allocation
Overall procedure of the present study is shown
in Figure 1. There are a preparation phase and an
application phase. In the preparation phase, first,
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the learning data of various sets of subcomponent
reliability parameters and the corresponding re-
sponse, which is the reliability of urban transit
brake system, are prepared by RES database which
are developed in section 3. The neural networks
described in section 2.2 are adopted to approxi-
mate the response of the reliability relationship
between subcomponent and urban transit brake
system from the prepared learning data. In the ap-
plication phase, the subcomponent reliability para-
meters are estimated by GA’s described in section
2.3 using the trained networks obtained in the
preparation phase. Using the trained networks, a
maintenance reliability allocation problem can be
constructed as an optimization with GA’s. The

—— Prepanation Phase -
- \
A
Learming Data
(Component veliability, System veliability)
MNewral Network
.
-~ Application Phase Jl .
4 7 | System reliabilicy Y

Trained

AR E RN
Genetic
Menral Network

Algorithin 5 |
— A\
) ‘“]i"— Lol ge A [ Component veliabiliny
Reliability '
Alloeation
M . ,/’
Fig. 1 Reliability allocation procedure based on
hybrid neuro-genetic algorithm
Initial Population
e l
] | Mutation
Trained |
Neural Network -
Recombi-
£l R
¥ natien
Measured
Evaluation
System reliability ] Selection
(Rg) L Criteria

- LT Mo
" Stopping T
T Criterion

Yes
~

".‘: End

e e
Fig. 2 Flowchart of the hybrid neuro-genetic
technique

optimization problem to be formulated is defined

as follows :
Min U= (Rs (X) *R(;)Z
X=(R)", (1)

s.t. Rimin<R;<Rimax, i=1,2,""",n

where Fs, which is unknown variable, is the cal-
culated reliability of a subject system, K¢, which
is known reference variable, is the target relia-
bility of a subject system, ¥ is the error function
between Ks and R¢, and R; is the reliability of
each subcomponent composing a subject system.
The general procedure is illustrated in Fig. 2.

2.2 Neural network

Studies on neural networks have been motivat-
ed to imitate the way that the brain operates. A net-
work is composed of the individual neurons, the
network connectivity, the weights associated with
various interconnections between neurons, and
the activation function for each neuron (Fahlman,
1990 ; Rumelhart et al., 1986) . The network maps
an input vector from one space to another. The
mapping is not specified, but is learned. The net-
work is presented with a given set of inputs and
their associated outputs. The learning process is
used to determine proper interconnection weights
and the network is trained to make proper asso-
ciations between the inputs and their correspond-
ing outputs. Once trained, the network provides
rapid mapping of a given input into the desired
output quantities. This, in turn, can be used to en-
hance the efficiency of the design process.

Consider a single neuron. This neuron receives
a set of » inputs, x;, 1=1,---,n from its neigh-
boring neurons and a bias whose value is equal to
one. Each of the inputs has a weight (gain) w;;
connecting between the 7-th and j-th units. The
weighted sum of the inputs determines the activity
of a neuron, and is given as (Fahlman, 1990)

n
netJ:Zl WiiXs (2)
£

A simple function is now used to provide a map-
ping from the #-dimensional space of inputs into
a |-dimensional space which comprises of an out-
put value a neuron sends to its neighbors. The
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output of a neuron is a function of its activity.

y=f(net) (3)

Many types of neural networks have been pro-
posed by changing the network topology, node
characteristics, and the learning procedures. In
this study, we use the back-propagation network,
that is, a multi-layer feed-forward neural network
topology with one hidden-layer as shown in Fig.
3. A back-propagation network consists of an
input layer, hidden layers, an output layer and
adaptive connections between successive layers.
Back-propagation networks can learn when present-
ed with input-target output pairs.

The back-propagation is used usually for its
“supervised” learning. It is essentially a special
purpose steepest descent algorithm to adjust the
w;; connection strengths, and other additional in-
ternal parameters that are sometimes added to in-
crease flexibility, to reproduce the output of given
input-output training sets within a required error
tolerance. The training error is defined as follows:
(Rumelhart et al., 1986)

Eoun= i‘. E,= i‘. f‘. (Rr_pp—Ro_pz)? (4)
=1 p=1i=1

where E) is the square error for the p-th training
pattern, Rr p is the teacher reliability signal to
the &-th unit in the output layer for the p-th train-
ing pattern, Ro pr is the output reliability signal
from the &-th unit in the output layer for the p-th
training pattern, and # is the number of output
units and # is the number of patterns, respective-
ly. In the training process, the connection wights
wj; is modified repeatedly based on the steepest

| Input Layer | | Hidden Layer | | Cutput Layer |

Fig. 3 Three-layer neural network

descent method in order to minimize the above
square €rror.
oF
Aw;i= — p-2sum.
Jwss (5)

Wit =wii+ Aw;;
where 7 is learning rate constant. The training is
sensitive to the choices of the various net learning
parameters. The first parameter is the “learning
rate” which essentially governs the “step size”, a
concept familiar to the optimization community,
and the learning rate constant should be updated
according to the following rule.

+a if AEsun>0consistently
— by if AEsun<0 (6)
0 otherwise

Ap=

This learning rate approach is an adaptive learn-
ing constant. The second parameter is the “momen-
tum coefficient” which forces the search to con-
tinue in the same direction so as to aid numerical
stability, and furthermore, to go over local mini-
ma encountered in the search. This scheme is im-
plemented by giving a contribution from the pre-
vious step time to each weight change:

Aw(n) ==V Esun(n) +anAw(n—1) (7)

where a,<[0, 1] is a momentum parameter and
a value as 0.9 is often used. The momentum term
typically helps to speed up the convergence and to
achieve an efficient and more reliable learning
profile.

2.3 Evolutionary algorithms (EA’s)

Evolutionary algorithms are probabilistic opti-
mization algorithm based on the model of natural
evolution and the algorithm has clearly demon-
strated its capability to create good approximate
solutions in complex optimization problems. The
popularity of the algorithms is due to the follow-
ing characteristics :

(1) Less possibility to converge to a local mini-
mum as the search starts from a number of points;

(2) Compatibility with the parallel computer ;

(3) Robustness since only objective function in-
formation is required ; and
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(4) Capability to find a solution in broad search
space eftectively through probabilistic operations.

Out of the algorithms such as genetic algo-
rithms (GA’s) (Holland, 1975), evolution strate-
gies (ES’s) (Rechenberg, 1973), evolutionary pro-
gramming (EP) (Fogel et al., 1966), GA’s are most
popular by the fact that its reproductive processes
use only a couple of deterministic rules (mostly
randomized processes), causing them to be appli-
cable to a variety of complex optimization prob-
lems. Genetic Algorithms developed, by Holland
(1975), have traditionally used bit-strings of fix-
ed length /, i.e. u?€I={0,1}". The evaluation of
the fitness can be conducted with a linear scaling,
where the fitness of each individual is calculated
as the worst individual of the population subtract-
ed from its objective function value (Goldberg,
1989).

O (xF) =max{f (x*) | K*€ R*} — f (x*),
Vie{i, -, A}

O (xF) >0 is thus satisfied by this equation. Se-
lection in GA’s emphasizes a probabilistic sur-

(8)

vival rule mixed with a fitness dependent chance
to have different partners for producing more or
less offspring. Holland identifies a necessity to
use proportional selection in order to optimize
the trade-off exploiting promising regions of the
search space while at the same time also explor-
ing other regions. For proportional selection, the
reproduction probabilities of individuals #; are
given by their relative fitness :

O (xF)
O (xf)

>~

=1

<
Il

Recombination of the genetics is conducted by the
crossover. An exogenous parameter p. (crossover
rate) indicates the probability per individual to
undergo recombination. Typical values for p. are
in the range [0.6, 1.0]. In the case of one-point
crossover, two randomly-selected individuals are
renewed by two offspring individuals :

{ué”“z{ufh“'ugm,u/{f(mﬂ),“',ufl} (1())
uﬁ“Z{ u}zzl, "'ufm, Mz’f(mﬂ), Ty ugl}

Mutation in GA’s works on the bit string level

and is traditionally referred to as a background
operator. It works by occasionally inverting sin-
gle bits of individuals, with the probability p, of
this event usually being very small.

k+1
ukfrl:{ui;r 8:;> Dm
7,
g l—ufjﬂ l9ijgpm

(1)

where 9;;&[0,1] is a uniform random variable,
sampled anew for each bit. These reproductive
operations form one generation of the evolution-
ary process, which corresponds to one-iteration
in the algorithm, and the iteration is repeated
until a given terminal criterion is satisfied.

3. Development of Reliability Based
Maintenance System

In this chapter, a reliability evaluation frame-
work, which is a mathematical approach, is ap-
plied. This framework uses a reliability index for
RCM (Reliability Centered Maintenance) of ur-
ban transit. The framework requires four factors :
BOM (Bill of Materials) (Bae et al., 2004 and Lee
et al., 2005), RBD (Reliability Block Diagram),
FBD (Function Block Diagram), and standardi-
zation of failure code classification (Kim et al.,
2004). Then, the MTBF (Mean Time between Fail-
ures) at the maintenance stage from the reliability
evaluation framework can be computed. MTBF is
similar to the life time of each component. The
developed system defines the maintenance proce-
dure for urban transit since successful mainte-
nance system depends on an automated mainte-
nance plan. This plan can be scheduled effectively
by collecting and analyzing data from maintenance
experience. For doing this, this chapter proposes
the web-based maintenance system for collecting
data and the computing of MTBF (Mean Time
between Failures) for analyzing data. In previous
research (Bae et al.,, 2005), we have developed
the reliability evaluation system of VVVF urban
transit. This chapter describes to develop the re-
liability based maintenance system by taking FBPC
(Friction Brake & Pneumatic Control) system
out of fourteen main system of urban transit as a
sample model because the optimal maintenance
reliability of FBPC system, which is a subject
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system in this research, should be allocated in
chapter 4.

3.1 Sample model definition — friction
brake & Pneumatic control
There are generally five kinds of braking in
urban transit. Those are common braking, emer-
gency braking, security braking, stoppage brak-
ing, and parking braking. For these five kinds of
braking, urban transit brake system use two con-

trol methods. One is electric braking control method
using electric propulsion system and inverter, and
the other is friction braking control method using
contact resistance between brake disc and brake
pad. In case of normal condition, electric braking
control method is mostly applied to urban transit
braking. In case urban transit is below proper
velocity or electric braking power is insufficient,
friction braking control method is applied to ur-
ban transit braking. This friction braking control

Table 1 BOM of VVVF urban transit

1 Label

2 Label

Vehicle

o Vehicle Cabling
o Air Piping
o Bolt & Fastening

Carbody and Gangway

o

Carbody Structure : Body-shell
Exterior Appearance

o

o Gangway

Interior & Facility (for passenger & crew)

o

Interior

o Windows Unit
Exterior Equipment
o Cab’s Equipment

o

Door & Door Control

o

Passenger Door (Side Door)
o Cab’s Door

Air Comport System (HVAC)

o

Cooling Unit
o Line Flow Fan

Power Distribution & Auxiliary Equipment

o Static Inverter (SIV)
Battery System
o AC & Low Voltage Equipment

o

Propulsion & Electric Braking system

o

Power Supply (Pantograph)
o Mechanical Propulsion System

o

Electric Propulsion System

Truck (Bogie)

Friction brake & Pneumatic (System)

o Bogie Frame o Wheel set

o Primary Suspension o Traction Link (Pivot)
o Secondary Suspension  © Bogie Additions

o Brake Control o Reservoir

o Brakes o Valves

o Compressed Air Supply o Pneumatic Horn

Coupler and Draft Gear

o Coupler
o Draft Gear

Lighting (System)

o Interior Lighting
o Exterior Lighting

Train Control and Monitoring System (TCMS)

o Display
o Control

Information & Communication

o Train communication (Radio)

o

Information & communication (PIS, PA)

Signal

o

ATC/ATO
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method uses FBPC (Friction Brake & Pneumatic
Control) system. FBPC system is a kind of brak-
ing device, which makes urban transit stop or main-
tains the status by using air (Lee et al., 2001). As
illustrated in Table 1, it has 6 parts: brake con-
trol, valves, air compressor, friction brake, reser-
voirs, and valves. FBD and RBD of FBPC system
are shown respectively in Figure 4. Figure 4(b),
RBD of FBPC system, shows a series structure of
each subcomponent because each failure affects
the braking performance of urban transit. Because
parts of FBPC system have a relationship in a
series of system, the failure rate of FBPC system is
calculated by the following equation (12).

Asraxe = Asc + Aac + Ars+ Ars + Avv + Apnr

where,

(12)

Asc =failure rate of brake control
Aop =failure rate of air compressor

Parking brake order
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Arp =failure rate of friction brake
Ars =failure rate of reservoirs

Ayy =failure rate of values

Apy =failure rate of pneumatic horn

(1) Brake control Asc: Brake control includes
not only BOU (Brake Operating Unit) but also
controllable parts, which secure the power of brak-
ing for urban transit. BOU is controlled by an
electric signal. When braking in common or emer-
gency is worked on/off, BOU controls whether
reservoirs is filled up or emptied by air. BOU is
composed of valves and electronic units, which con-
trol braking in common through, cross branding
of vehicle. Electronic unit is control board which
is composed of electric/electronic parts. This pa-
per shall omit the modeling for prediction of its
failure rate because of duplication of model for
electric / electronic part in MIL-HDBK-217F.

Wheel & Axle |
Assembly |

! (wheel, axle, disc)

AC AC
Operational 100V 220V
condition For:heater
TCMS <—| ¥ ¥
BOU
{(including BCU
Drivefs by
Operating |~

Brake order

! Antiskid |
Junction bx

\
ATO/ATC U Air Drysr Unit
X Compressor
Alr pressure
ATC \ Fixed height contrdl
“of air pressiifé Air Reservoir
wiring > VWWF inverter < 3
3 g Valve
Generated voltage ;
Panlographr Molor g > Alr pressurs
83
Vheel & Axle P ¢ 29
e le—f 5%
bly 1 o2
o Regenérative brake

Rail
(a) Function block diagram
FBPCO01 FBFCO2 FBPCO3 FBPCH FBPCOS FBFC 06
Brake Control *| Friction Brake ('0_1“])‘1‘?:‘:5‘9(] | Valves Reservoir Pnewmatic
Air Supply Hormn

(b) Reliability block diagram
Fig. 4 FBD and RBD of FBPC system
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(2) Friction brake Agp : For decrease or stop of
a vehicle, it is necessary to convert kinetic energy
into heat energy. Friction brake is a device which
absorbs or gives out this heat energy. Friction brake
is composed of actuator, spring, friction materials,
bearing, seal, and housing. The modeling for pre-
diction of failure rate is illustrated in equation

(13)
/IFB:/iAC +/15P + Arr + Ase +/15E +/1H0 (13>
where,

Aac =failure rate of actuator

Asp =failure rate of spring

Are =failure rate of friction materials
Ase =failure rate of bearing

Ase =failure rate of seal

Ao =failure rate of housing

(3) Reservoir Ags : the failure rate of reservoir is
calculated as the equation (14).

/1Rs = /1512 + ASP + APCAVA + /L:W ( 1 4)
where

se =failure rate of seal
Asp =failure rate of spring
Apc =failure rate of cylinder interface
Ava =failure rate of valve
Acw=failure rate of cylinder wall

(4) Valve Ayv: Generally, there are a poppet
type and sliding-action type in a valve. A poppet
type valve is utilized for controlling flow, pres-
sure, direction of fluid. A sliding-action type valve
is utilized for distributing uniform pressure of fluid.

The failure rate of poppet type valve can be
written in equation (15).

/1W_Po:APo_E' Cr+Co Cr Cy* Cy+ Cs* Cor* Csw* Cw (15>
where,

Apo_p=Dasic failure rate of poppet type valve
Cp =pressure factor of fluid

Cq =factor of air leak

Cr =factor of surface disposal

C, =factor of temperature/lubrication

Cy =factor of pollution level

Cs =factor of seat stress

Cpr =factor of seat diameter

Csw =factor of seat land wide

Cw =factor of flow rate

The failure rate of sliding-action type is calcu-
lated in equation (16).

Aw_svz/lsv_s‘ Cq*Cyp*Cy+Cps* Cy+ Cu+ Cw (16)
where,

Asv_g=basic failure rate of sliding-action type
valve

C,. =factor of friction,

Cp =factor of spool clearance

Cps =factor of spool diameter

3.2 Result of reliability evaluation and veri-

fication

Desired reliabilities are introduced based on
standard that is managed at the maintenance stage.
Then, actual reliabilities using the reliability eval-
uation method is predicted. Finally, this paper
compares a desired reliability with a predicted re-
liability and estimates the result. In case a device
typically follows random failure, the reliability
index can be considered as MTBF (Mean Time
between Failures), MDBF (Mean Distance be-
tween Failures), MTBSF (Mean Time between
Service Failures), and MDBSF (Mean Distance
between Service Failures). MTBF out of these in-
dexes is considered as reliability standard of each
device in developed reliability evaluation system.
Desired MTBF (Lee et al., 2001) is derived from
current maintenance standard. Under the current
maintenance standard, the MTBF of a vehicle re-
quires 115 hours. Table 2 shows the desired MTBF
of fourteen subsystems.

By doing reliability analysis based on failure
historical data of FBPC system, the results as
shown in Table 3 are obtained. In Table 3, the
MTBF of 2058 hours is the result per one unit of
FBPC system. Because one unit of FBPC system
is equipped in two vehicles, the MTBF of FBPC
system becomes 1029 hours per vehicle. This re-
sult demonstrates that the MTBF of 1,029 (hour
per vehicle) meets the desired MTBF of 898 (hour
per vehicle) in Table 2. Besides, for verifying pro-
priety, the MTBF of FBPC system was calculated
by an application program, relex 7.0 (2002), with
same input data and Table 3 shows the result. As
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shown in Table 3, the application program shows
that the failure rate is 470.7 X 107 and the MTBF
is 2,124 hours, and developed system shows that
the failure rate is 485.9X107® and the MTBF is
2,058 hours. The total error is 3.23%. Therefore,
it is reliable as much as the error is below five
percent. By applying this reliability analysis re-
peatedly to fourteen subsystems of urban transit,
this paper obtained MTBF and failure rate of
each subsystem and illustrate in Table 2. The
result shows that the MTBF of 208 hours meets
the desired MTBF of 115 hours in terms of urban

transit vehicle.

3.3 Development of web based maintenance
system

For development of reliability based mainte-
nance system using maintenance historical data,
this paper assumes as follows: Each subcomponent
composing urban transit vehicle is independent
in terms of failure, All device are defined by two
status, failure and available, Change and repair
historical data of each device is regarded failure,
and the failure follows an exponential function

Table 2 Desired and calculated reliabilities of urban transit

Desired Calculated
Subsystem MTBF Ratio MTBF Ratio Failure
(hours) (%) (hours) (%) Rate
(X107
Vehicle Cabling/Piping - - - - -
Carbody & gangway 46,000 0.25 - - -
Interior & facility 767 15.0 - - -
Door & door control 719 16.0 719 28.92 13.91
Air comport system (HAVC) 1,554 7.4 3,133 6.64 3.19
Power distribution & aux. equipments 1,173 9.8 3,212 6.47 3.12
Propulsion & electric braking system 1,513 7.6 4,231 491 2.37
Truck (bogie) 3,710 3.1 - - -
Friction brake & pneumatic control 898 12.8 1,029 20.21 9.72
Coupler & draft gear 14,375 0.8 16,667 1.25 0.6
Lighting (system) - - - - -
Train Control & Monitoring system 3,485 33 4,472 4.65 2.24
Information & communition 685 16.8 973 21.4 10.28
Signal (ATC/ATO) 1,608 7.15 3,811 5.45 2.63
Total (unit) 115 100 208 100 48.06
Table 3 FBPC system reliability and verification
Developed system Relex
Subsystem - - Error
Failure rate MTBF Failure rate MTBF o
(X107 hour) (hour-Unit) (X 1078 hour) (hour-Unit) (%)
Brake Control 202.2 4,946 195.9 5,104 3.21
Valves 106.9 9,355 104.4 9,578 2.39
(Friction) Brake 122.6 8,157 117.0 8,547 4.78
Air compressor 8.0 125,000 79 126,908 1.52
Reservoir 20.6 48,544 20.3 49,261 1.47
Pneumatic horn 25.6 39,063 25.2 39,682 1.58
Total (unit) 485.9 2,058 470.7 2,124 3.23
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because failure of urban transit is accidental.
The architecture is shown in Fig. 5. The devel-

opment environment is as below : Java;

+Web-based Applications ;
*Web Tier development environment: JSP+

‘Web based Integration Control System

Development of Maintenance System
= Simulation control through GU1T
« Result record at DB
« Definition of the rules
and the communication framework

Development of Failure Management System * DB access, modification, update
» failure occurrence registration module
» failure inquiry module Maintenarce history

& Manftenance |
« fallure symptom management module = 4" ’“%'?pm Management

Failure Management

Rifs f Cate

GUI
/

Development of Expert Management System

RAMS Information
8 Maintenance request

Failrs
nformation |

« failure keyword search module

* rule based reasoning algorithm
fallre  * case based reasoning algerithm

Preventing Maintenance '=*°“. ule & case management module

+ Maintenance procedures presentation module
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-Development programming language: JDK
1.3.1_06, J2SDEE 1.3.1;

-Database : Oracle 9i ; and

+WAS : WebSphere.

A database was constructed so that it can easi-
ly and quickly be accessed, updated and extend-
ed. Entity Relationship Diagram is illustrated in
Figure 6. ‘RAMS’ table has results of reliability
analysis. ‘/RAMSHISTORY’ table contains histor-
ical data of reliability analysis and these data are
used for graphing failure rate, MTBF, reliabili-
ty indexes and MTTF (Mean Time to Failure).
‘DOWNCD’ table is for failure codes. ‘CAR’ ta-
ble has basic information according to car num-
ber, vehicle number and line number of the urban
transit. In the ‘HISTORY” table, maintenance his-
tory is accumulated, and the ‘TREE’ table con-
tains information to the hierarchical tree of BOM.
To uniquely store, process and retrieve every pos-
sible data for the table, we set car number, BOM
code and position number as Primary Keys.

A AN AN D3N QIR Phe OGN | CoaiTalns Hoes vel Sae
BT 399 BEe - @IR- LSt - [COmaTONEE i AT [

The GUI shown in Fig. 7 displays failure rate,
MTBEF, and reliability of systems, sub-systems, equip-
ments and parts by line number, vehicle number
and car number of urban transit. Through graphs,
changes of these indexes according to free operat-
ing time can be checked.

4. Application of Maintenance
Reliability Allocation

4.1 orting main devices

Sorting main devices is accomplished in ad-
vance the reliability optimization of the brake
friction and air pressure control system. It is be-
cause a number of devices which consists of the
system can become a great burden to the calcula-
tion of formula approximation and optimization
for the complicated system such as urban transit.
So, this research, by sorting the main devices with
respect to the degree of effect on the reliability of
the brake system, reduces the calculation cost of
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the optimization and in/output data volume which
is necessary for the approximation. Main devices
are sorted by the effectiveness (Mettas, 2000) to
the reliability, using the concept of the sensitivity
function such as equation (17).

_[oy dy . oy
G= gr g o] (7

If the equation (17) is applied for the brake sys-
tem to sort out the main devices, it can define the
effectiveness with the volume change of reliability
in FBPC system regarding the volume change of
reliability in each device as seen in equation (18).

_ ORrsrc
oR; (18)

0<Ip (i) <1, i=1,2,",6

Iz (7)

According to the Figure 8, the effectiveness’s to
improve the reliability in FBPC system are Ir
(BC) =0.978, Iz (V) =0.866, Iz (FB) =0.900, I
(H) =0.382, Iz (R) =0.321, and Iz (AC)=0.134
for each brake control, valve, brake friction, pneu-
matic horn, reservoirs, and air compressor con-
secutively. Shown in Fig. 8, pneumatic horn, res-
ervoirs, and air compressor have remarkably less
impact than brake control, valve, and brake fric-
tion. So, this research defaults the reliability of
brake control, valve, and brake friction as main
devices and design variable to improve the main-
tenance reliability of FBPC system.

4.2 Problem definition for reliability alloca-
tion using optimization technique

The problem is defined as the equation (19)

when an inverse analysis method is used to opti-
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Fig. 8 Reliability importance of FBPC system

mize the maintenance reliability of FBPC system.

Min  ¥=(Rrspc(X) —R¢)?
X=(Rzc, Rv,Rrs) ",

st 0.834< Rpc<0.999 (19)
0.909< Ry <0.999
0.896< Rr5<0.999

where, Rrspc (X) is the reliability of FBPC sys-
tem, which is calculated by the reliability evalua-
tion system and R is the target reliability based
on the maintenance standard for urban transit
running currently. Also, X denotes 3 X1 reliabili-
ty matrix of all three of brake control, valve, and
brake friction, all which construct FBPC system.

The optimization is to minimize error function
of ¥ which is defined as the square of errors
in system reliability, K¢, supported by both sys-
tem reliability, Rrspc, Which is evaluated by the
X matrix, the parameter and the maintenance
standard. Each device, as a parameter, is set to
move freely within the range between the predic-
ted reliability, as the lower bound, at the planned
time of 898 hrs by the maintenance standard and
99.9% as the upper bound.

The reliability of a subject system, the target
function for a regular increment of a design vari-
able is produced and trained according to the
artificial neural network in order to introduce
Rrepc function which presents the reliability rela-
tionship between system and each device. It is
not only because each step needs the reliability
evaluation during the optimization but also be-
cause the maintenance historical data of relia-
bility evaluation system made by the web can be
introduced for the optimization after it is produc-
ed from the database.

In this research, the patterns which consist of
1,331 sets of data are used to train the neural
network of Fig. 9. The reliability interval is bro-
ken into 6 sub-intervals of 0.865, 0.89, 0915,
0.94, 0.965, and 0.99 according to the effectiveness
analysis. Because of the nature of the sigmoid ac-
tivation function, i.e. saturation function, the out-
put variables should be scaled by the user, to be
within the most active range of the sigmoid func-
tion. Scaling rule that minimum and maximum
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Fig. 10 Neural network training output

values are set to 0.1 and 0.9 is usually suggested.
Through some trials, a network with neuron ar-
rangement (input-hidden-output) of 3-7-1 train-
ed with 100,000 iteration for the 1,331 patterns
are concluded to be the best for our application.
In addition, to attain the stable convergence in
the training process the momentum coefficient is
set to 0.9 and to speed up the convergence the
adaptive learning rate is used. That is, if the error
decreases the learning rate is increased by 1.05.
Otherwise, the learning rate is decreased by 0.7.

Mean Square Error (MSE) is empolyed as a
measuremenet of modeling performance. The ma-
thematical expression can be described as fol-
lows :

MSE=EL_" (20)

where, e; denotes an error at pattern 7 and N is
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Fig. 11 Comparison of the estimated reliabilities
from neural network to target values

the total number of pattern. As shown in Figure
10, the final MSE is 0.001953. The estimated re-
liabilities of FBPC system from network are com-
pared to the target values as shown in Figure 11.

4.3 Optimization result for maintenance re-
liability allocation

For the defined optimization problem using
artificial neural network, genetic algorithm is ap-
plied to compute the optimal reliability of main
devices, design variables of Rpc, Ry, and Rps,
which construct FBPC system. The fitness func-
tion is set up, seen as equation (20), to transform
for the calculating the maximum value.

1
| Rrspc (X) —Re|?

The genetic algorithm for this research is set up :

fitness= (20)

population size, N=150; crossover rate, p.=0.25;
and mutation rate, p»,=0.01. Also, each parame-
ter is represented as a 44-bit binary number and
roulette wheel selection method is adopted for the
selection.

The optimization is performed with the relia-
bility of both 0.90 and 0.95 to satisfy the mainte-
nance standard. Figures 12 and 13 illustrate con-
vergence history of the objective function for CASE
1 (R;=0.90) and CASE 2 (R¢=0.95), respective-
ly. The searches meet convergence after 79" and
97™ generation for CASE 1 (Rz=0.90) and CASE
2 (Rc=0.95), respectively. The result of Table 4
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Fig. 13 Generation history of CASE 2 (R;=0.95)

Table 4 Allocated maintenance reliability and cycle of FBPS system

CASE 1 (Rs=0.90) CASE 2 (Rc=0.95)
Optimum Result Maintenance Cycle Optimum Result Maintenance Cycle
Ric 0.9572 216.33 hrs 0.9783 108.50 hrs
Ric 0.9783 205.23 hrs 0.9883 110.09 hrs
Ric 0.9623 312.69 hrs 0.9829 140.34 hrs
Result Value Reference Value Result Value Reference Value
Rs 0.9009 0.9011 0.9505 0.9503
ER (%) 0.0222 0.0210

shows that the maintenance reliability of main
devices is estimated by the hybrid neuro-genetic
technique. As seen in Table 4, the error rates are
0.0222% for CASE 1 and 0.021% for CASE 2.
This can interpret that it is effective method to
apply inverse analysis theory and neuro-genetic
algorithm for the reliability.

4.4 Introducing the standard for the main-
tenance cycle
Since defects on urban transit happen acciden-
tally, the reliability index follows the exponential
distribution. Equation (21) shows the reliability
function.

R(t) =exp [—/:ﬂ(t) dt}zexp[—/lt] (21)

where, ¢ denotes the operating time for each de-
vice, and A(#) is a function of the failure rate.
Equation (21) can be transformed to equation

(22) when the MTBF, the reliability index of de-
vice which follows the exponential distribution,
is introduced for failures.

R(t) =exp [—L} (22)

m
where, m is the average interval of failure, MTBF.
Using equations (21) and (22), equation (23) is
generated by equations (21) and (22) with the
transformation to time domain after solving with
reverse function.

t=—log R=—

2 (23)

m logeR
Equation (23) can be re-established with the maxi-
mum optimization, current failure rate, average
life cycle, and the repairing time spending in
order to calculate the repairing interval that can
satisfy the result level of the optimized reliability
of each device which consists of FBPC system.
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T:,= —LlogeR,-* =—m; log.R}

A (24)

i:l’z’...’n

where, T; is the repairing interval of a 7-th de-
vice, A; is the 7-th current failure rate, #; is the
i-th current MTBF, and R is the ;-th optimized
reliability. With equation (24), Table 4 shows the
maintenance cycle for main devices to keep the
target reliability of 0.90 and 0.95, respectively. In
the maintenance cycle currently run at the main-
tenance stage for urban transit, brake system is in
the regular inspection which is done every three
days. Under the consideration of the operating
time of 10 hours per a day, it is determined that
the inspection and repairing is done in every 30
hours. This shows the reduction of maintenance
cost and the safety acquirement from Table 4.

5. Discussion and Concluding
Remarks

This research approached the historical main-
tenance data as system and then introduced the
optimization method for device reliability allo-
cation that can satisfy the maintenance stand-
ard. The optimization for maintenance reliabili-
ty allocation with inverse analysis theory and
neuro-genetic algorithm was applied for the brake
system in urban transit and then it could calculate
the optimized reliability. After applying this opti-
mization method for generating the standard of
reasonable maintenance, the conclusion could be
obtained as follows :

(1) BOM, FBD, and RBD such as Table 1,
Figure 4 were composed to evaluate the brake
system in VVVF urban transit. FBPC system, the
basis for the brake system, had 6 sub-categories
and the functional relationships with each other
sub-category were observed. As a result, the series
relationship of reliability was drawn because the
brake performance or the operation of urban
transit had a negative effect if any failure in any
sub-categories occurred.

(2) With five year historical maintenance data,
the failure rate was 485.9X 1075, MTBF 1,029 hrs

when the reliability of the brake system in VVVF
urban transit was analyzed. Also, the failure rate
of each device in the brake system was shown in
the Table 2. That failure rate and the web-based
system enabled to obtain the 1,331 main relia-
bility matrixes which were based on the time
variance.

(3) According to the analysis on the reliabili-
ty effectiveness of each device which consists of
brake system, it was shown that the brake control
(Iz (BC)=0.978), the valve (Iz(V)=0.866), and
brake friction (Iz (FB) =0.900) had more impact
on the brake system reliability than any other sys-
tems. This result can enable to reduce the input/
output data volume and calculation cost and to
define a subject for the maintenance cycle regula-
tion.

(4) The formulization for the optimization was
performed by the artificial neural network. The
chosen main device was divided into 6 pieces ac-
cording to the reliability interval and the change
to the time variance is observed. Then the 1,331
reliability patterns were produced and these were
used as the input/output points. As a result, the
final MSE was shown as 0.001953, considerably
stable value.

(5) The maintenance reliability allocation of
main devices that satisfied the target value of the
brake system was produced by the inverse anal-
ysis theory and neuro-genetic algorithm. The
given reliability levels were 0.90 and 0.95 to meet
the maintenance standard. As a result, the error
in CASE 1 was 0.0222% and that in CASE 2 was
0.021%, shown in Table 4 as optimal reliability
for main devices. Also, Table 4 showed the stand-
ard for the maintenance cycle that satisfied the
reliability optimization, using the reverse function
for the reliability.
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